Laplacian algebras, manifold submetries and the Inverse Invariant Theory Problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولInverse nodal problem for p-Laplacian with two potential functions
In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...
متن کاملInverse nodal problem and Ambarzumyan problem for the p-Laplacian
We study the issues of reconstruction and stability issues of the inverse nodal problem for the one-dimensional p-Laplacian eigenvalue problem. A key step is the application of a modified Prüfer substitution to derive a detailed asymptotic expansion for the eigenvalues and nodal lengths. Two associated Ambarzumyan problems are also solved. AMS Subject Classification (2000) : 34A55, 34B24. 1 2 1...
متن کاملAn Inverse Problem for the p-Laplacian: Boundary Determination
We study an inverse problem for nonlinear elliptic equations modelled after the p-Laplacian. It is proved that the boundary values of a conductivity coefficient are uniquely determined from boundary measurements given by a nonlinear Dirichletto-Neumann map. The result is constructive and local, and gives a method for determining the coefficient at a boundary point from measurements in a small n...
متن کاملA note on the bounds of Laplacian-energy-like-invariant
The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometric and Functional Analysis
سال: 2020
ISSN: 1016-443X,1420-8970
DOI: 10.1007/s00039-020-00532-6